Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 749472, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734412

RESUMO

The KMT2A (MLL) gene rearrangements (KMT2A-r) are associated with a diverse spectrum of acute leukemias. Although most KMT2A-r are restricted to nine partner genes, we have recently revealed that KMT2A-USP2 fusions are often missed during FISH screening of these genetic alterations. Therefore, complementary methods are important for appropriate detection of any KMT2A-r. Here we use a machine learning model to unravel the most appropriate markers for prediction of KMT2A-r in various types of acute leukemia. A Random Forest and LightGBM classifier was trained to predict KMT2A-r in patients with acute leukemia. Our results revealed a set of 20 genes capable of accurately estimating KMT2A-r. The SKIDA1 (AUC: 0.839; CI: 0.799-0.879) and LAMP5 (AUC: 0.746; CI: 0.685-0.806) overexpression were the better markers associated with KMT2A-r compared to CSPG4 (also named NG2; AUC: 0.722; CI: 0.659-0.784), regardless of the type of acute leukemia. Of importance, high expression levels of LAMP5 estimated the occurrence of all KMT2A-USP2 fusions. Also, we performed drug sensitivity analysis using IC50 data from 345 drugs available in the GDSC database to identify which ones could be used to treat KMT2A-r leukemia. We observed that KMT2A-r cell lines were more sensitive to 5-Fluorouracil (5FU), Gemcitabine (both antimetabolite chemotherapy drugs), WHI-P97 (JAK-3 inhibitor), Foretinib (MET/VEGFR inhibitor), SNX-2112 (Hsp90 inhibitor), AZD6482 (PI3Kß inhibitor), KU-60019 (ATM kinase inhibitor), and Pevonedistat (NEDD8-activating enzyme (NAE) inhibitor). Moreover, IC50 data from analyses of ex-vivo drug sensitivity to small-molecule inhibitors reveals that Foretinib is a promising drug option for AML patients carrying FLT3 activating mutations. Thus, we provide novel and accurate options for the diagnostic screening and therapy of KMT2A-r leukemia, regardless of leukemia subtype.

3.
Biochim Biophys Acta Rev Cancer ; 1872(1): 80-88, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31201827

RESUMO

FLT3 overexpression is a recurrent event in various acute leukaemia subtypes. This transcriptional deregulation is important to define the prognostic risk for many patients. Of note, the molecular mechanisms leading to this gene upregulation are unknown for a substantial number of cases. In this Mini-Review, we highlight the role of FLT3 overexpression in acute leukaemia and discuss emerging mechanisms accounting for this upregulation. The benefits of using targeted therapy are also addressed in the overexpression context, posing other therapeutic possibilities based on state-of-the-art knowledge that could be considered for future research.


Assuntos
Leucemia Mieloide Aguda/genética , Tirosina Quinase 3 Semelhante a fms/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucemia Mieloide Aguda/patologia , Mutação , Prognóstico
4.
Genes Chromosomes Cancer ; 58(6): 396-401, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30578688

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematopoietic malignancy with few molecular alterations showing a consensual prognostic value. CRLF2 overexpression was recently identified in high-risk T-ALL patients. For these cases, no genomic abnormality was found to be associated with CRLF2 overexpression. IKZF1 has been recently shown to be a direct transcriptional regulator of CRLF2 expression. Moreover, it is known that NOTCH1 antagonizes IKZF1 in T-ALL. In light of these pieces of evidence, we reasoned that IKZF1 binding perturbation and CRLF2 upregulation could be associated in T-ALL. We evaluated two independent series of pediatric T-ALL cases (PHOP, n = 57 and TARGET, n = 264) for the presence of common T-ALL molecular abnormalities, such as NOTCH1/FBXW7 mutations. We also assessed CRLF2 and IKZF1 gene expression. CRLF2 overexpression was observed in 14% (PHOP) and 16% (TARGET) of T-ALL patients. No correlation was found between mRNA expression of CRLF2 and IKZF1 in both cohorts. Interestingly, we show that patients with mutations affecting NOTCH1-PEST domain and/or FBXW7 had higher CRLF2 expression (P = .04). In summary, we demonstrate for the first time that only mutations resulting in ICN1 (intracellular domain of NOTCH1) stabilization are associated with CRLF2 overexpression.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptor Notch1/genética , Receptores de Citocinas/genética , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Mutação , Ligação Proteica , Domínios Proteicos , Estabilidade Proteica , Receptor Notch1/química , Receptor Notch1/metabolismo , Receptores de Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...